Click to see the Sellmeier Equation

Main Graph

Loss Graph

* Graphed points interpolated from referenced data sets

Mouse over bordered elements for description

Source(s) of Loss

  • Light is incident normal to the surface
  • \(n_p\), \(n_s\), \(l\)\([cm]\), \(\alpha_l\)\([cm^{-1}]\)
  • \(k = \frac{2\pi n_p}{\lambda}\)\([cm^{-1}]\)
  • \(R = \left|\frac{n_p - n_s}{n_p + n_s}\right|^2\)
  • \(Loss = 10\cdot log_{10}[\frac{1}{e^{-\alpha_ll}}]\)
  • \(Loss = 10\cdot log_{10}[\frac{1}{(1-R)e^{-\alpha_ll}}]\)
  • \(Loss = 10\cdot log_{10}[\frac{(1-R e^{-\alpha_ll})^2+4R e^{-\alpha_ll}sin^2kl}{(1-R)^2e^{-\alpha_ll}}]\)
\(n^2(\lambda)-1=\sum\limits_{i}\,\frac{A_i\lambda^2}{\lambda^2-\lambda_i^2}\)
\(n^2(\lambda,T)=\epsilon(T)+\frac{L(T)}{\lambda^2}(A_0+A_1T+A_2T^2)\)
where
\(L(T)=exp(-3\cdot\Delta L(T)/L_{293})\)
\(\epsilon(T)=11.4445+2.7739\times10^{-4}T+1.7050\times 10^{-6}T^2-8.1347\times 10^{-10}T^3\)
and
\(\frac{\Delta L(T)}{L_{293}}=\begin{cases} -0.021-4.149\times 10^{-5}T-4.620\times 10^{-8}T^2+1.482\times 10^{-9}T^3 & 20-293 K \\ -0.071+1.887\times 10^{-4}T+1.934\times 10^{-7}T^2-4.544\times 10^{-11}T^3 & 293-1600K\end{cases}\)
* Temperature is in K, Wavelength is in μm

Sellmeier Equation Coefficients
A0 λ0
A1 λ1
A2 λ2

References